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We study the adiabatic dynamics of the Lipkin-Meshkov-Glick �LMG� model close to its quantum critical
point by linearly switching the transverse field from an initial large value to zero. We concentrate our attention
on the residual energy after the quench in order to characterize the level of diabaticity of the evolution. As a
function of the characteristic time of the quench � we identify three different regimes. For fast quenches the
residual energy Eres is almost independent on �. For slower quenches a second intermediate region appears in
which a powerlike decay emerges with Eres��−3/2. By further slowing the quench rate, we find a third large-�
regime characterized by a different power law, Eres��−2. All these findings can be accounted for by means of
an effective Landau-Zener approximation for the finite-size LMG model. We complete our description of the
adiabatic dynamics of the LMG model through the analysis of the entanglement entropy of the evolved state.
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I. INTRODUCTION

Understanding the adiabatic quantum dynamics of many-
body systems is central to many areas of physics and infor-
mation science. In adiabatic quantum computation,1 or in
quantum annealing �see Ref. 2 for a review�, the ultimate
goal is to find the ground state of a complex system by
adiabatically transforming the underlying Hamiltonian. In-
deed any quantum algorithm can be efficiently implemented
through the adiabatic evolution of a system from an initial
exactly known state toward an unknown final one, which
encodes the answer to the specific computational task.3 Once
the time scale on which the Hamiltonian is varied is large
compared to the typical inverse spectral gap of the system,
the quantum adiabatic theorem4 ensures that if the system
was prepared in the ground state of the initial Hamiltonian, at
the end of the evolution, the quantum state will be the
ground state of the final Hamiltonian. The bottleneck to the
speed at which the algorithm is performed is thus given by
those places where the instantaneous Hamiltonian has a spec-
trum where the gap closes in the thermodynamic limit, i.e.,
as the number of qubits increases. If the minimum gap closes
faster than a power of the number of qubits, then the corre-
sponding computational task is intractable.

The closing of a gap between the ground state and the
first-excited level in the thermodynamic limit is a distinct
feature of second-order quantum phase transition. It is re-
sponsible for the critical slowing down,5 and the evolution
becomes necessarily not adiabatic. The problem of adiabatic
dynamics close to a critical point, and the consequent defects
formation, has originally born in the study of phase transi-
tions in the early universe.6,7 The recent extension to the
quantum case8,9 has stimulated an intense theoretical
activity.10–29

In the search for a deeper understanding of the loss of
adiabaticity on crossing a quantum critical point, an impor-
tant role is played by exactly solvable models. The study of
nonequilibrium many-body system is indeed a formidable
task and the help of a tractable exactly solvable system can
be of great help in testing approximate approaches, besides
being of interest in itself. Most of the work done so far in
this direction concentrated on one-dimensional quantum sys-
tems with short-range interaction. In this paper we would
like to address a complementary limit, i.e., a model with
infinite coordination �in the thermodynamic limit� but still
amenable of an exact solution: the Lipkin-Meshkov-Glick
model �LMG�. First introduced by Lipkin et al.30 in the con-
text of nuclear physics, it was then adopted by the
condensed-matter community as a paradigm of an infinitely
coordinated solvable system.31 The result of a sudden quench
in this model was recently discussed in Ref. 32. Here we
present results in the opposite regime in which the system is
dragged adiabatically through the critical point. As it will be
shown in the following, although the phase transition is of
mean-field nature, the dynamics leads to nontrivial results.

The paper is organized as follows. In Sec. II we introduce
the Lipkin-Meshkov-Glick model and briefly review its
properties, which are important for the purposes of this work.
In the same section we also discuss how we solve numeri-
cally the dynamics �Sec. II A� and the observables used to
quantify the departure from the adiabatic ground state �Secs.
II B and II C�. In this work we use the residual energy �the
excess energy as compared to the adiabatic limit�, the incom-
plete magnetization �the deficit magnetization as compared
to the adiabatic limit�, and the entanglement entropy. The
numerical results together with the corresponding scaling ar-
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guments are presented in Sec. III. In Sec. IV we present a
critical assessment of our findings.

II. MODEL

The properties of the LMG model have been thoroughly
scrutinized in the literature �see, e.g., Refs. 33–45, and ref-
erences therein�. Below we briefly recall few results that are
relevant to the present paper. The LMG Hamiltonian de-
scribes a system of spins �1/2 in this work� interacting
through an infinite-range exchange coupling and immersed
in a transverse field. Assuming that the field is directed along
the z direction, the Hamiltonian can be written as

H = −
2

N
�
i�j

�Si
xSj

x + �Si
ySj

y� − ��
i

N

Si
z, �1�

where N is the number of the spins in the system, Si are the
Pauli operators, � is the anisotropy parameter, and � is the

transverse field. By introducing the total spin operator S�
=�iS� i, the Hamiltonian can be rewritten, apart from a addi-
tive constant, as H=− 1

N �Sx
2+�Sy

2�−�Sz. The Hamiltonian
hence commutes with S2 and does not couple states having a
different parity of the number of spins pointing in the
magnetic-field direction; that is, �H ,S2�=0 and �H ,�iSi

z�=0.

In the isotropic case, �=1, also the z component of S� is
conserved, �H ,Sz�=0.

In the thermodynamical limit the LMG model undergoes
a second-order quantum phase transition at �c=1 character-
ized by mean-field critical exponents.33 The magnetization in
the x direction �or in the xy plane for �=1� vanishes when
�→1− as

m = ��1 − �2�1/2 � � 1

0 � � 1
	 �2�

for all values of the anisotropy parameter �. For ���c and
for any �, the ground state is nondegenerate; while for �
��c it is doubly degenerate in the thermodynamical limit for
any ��1, signaling the breaking of the Z2 symmetry. The
gap vanishes at the transition as

� = ��� − 1��� − ���1/2 for � � 1. �3�

For any finite N both the magnetization and the gap are
modified �as any other physical observable�. The finite-size
scaling behavior is available in literature in all the relevant
regimes �see, e.g., Refs. 33 and 40�. The deviation from the
thermodynamic limit for the gap 	�N=�N−� and the mag-
netization 	mN=mN−m scale as

	�N � N−1, 	mN � N−1/2, � � 1,

	�N � N−1/3, 	mN � N−1/3, � = 1,

��N� � e−aN, 	mN � N−1, � � 1, �4�

for ��1 �where a is a constant� and

	�N � N−1, 	mN � N−1/2, � � 1,

	�N � N−1, 	mN � N−1/2, � = 1,

	�N � N−1, 	mN � N−1, � � 1, �5�

for �=1, respectively. The scaling behavior of the gap is
important in order to distinguish the various dynamical re-
gimes in the adiabatic annealing. It is however important to
stress at this point that the equilibrium gap is not necessarily
the one responsible for the loss of adiabaticity. As we will
see in Sec. III A, due to the parity conservation, the relevant
gap for the dynamics is different from the equilibrium one
�although with the same scaling behavior�.

A. Adiabatic dynamics

The adiabatic dynamics is implemented by changing the
external transverse field from an initial value �
1 at tin
=−�, where the ground state of H�tin� is completely domi-
nated by the transverse field term with all the spins aligned
along the +ẑ direction, to �=0, where the ground state is
ordered in the xy plane. The annealing time is characterized
by a time scale �. More specifically we consider the case, as
often in this type of problems, where the magnetic field is
reduced linearly in time,

��t� = − t/� for t � �− tin,0� �6�

with tin
�.
The problem we want to discuss is further simplified by

the following observation. The initial state, the ground state
of H�tin�, belongs to the sector of maximum spin S=N /2.
Since S is a constant of motion, it is sufficient to restrict our
attention to this subspace only. From now on we assume S
=N /2 �for simplicity we consider N even�. In the basis

N /2,Sz� �Sz=−N /2, . . . ,N /2�, the Schrödinger evolution of
the state


��t�� = �
j=1

N/2+1

u2j−1�t�
N/2,− N/2 − 2 + 2j� �7�

amounts to solving the following set of coupled equations:

i
du2j−1

dt
= �

k

Aj,ku2k−1�t� . �8�

The odd amplitudes 
N /2,−N /2−1+2j� do not couple be-
cause of parity conservation. In Eq. �8� A is a �N /2+1�
 �N /2+1� symmetric matrix whose nonzero entries are
given by

Aj,j+1 = −
1

4N
�1 − ��a−N/2−2+2ja−N/2+2j−1,

Aj,j = −
1

4N
�1 + ���a−N/2−3+2j

2 + a−N/2−2+2j
2 � − ��−

N

2
− 2 + 2j

+
1

4
�1 + �� , �9�

in terms of the usual angular-momentum raising operator
matrix elements,
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aj = �N

2
�N

2
+ 1 − j�j + 1��1/2

. �10�

Special values have the boundary terms of A given by

A1,1 = −
1

4N
�1 + ��a−N/2

2 − ��−
N

2
 +

1

4
�1 + �� ,

AN/2+1,N/2+1 = −
1

4N
�1 + ��aN/2−1

2 − ��N

2
 +

1

4
�1 + �� .

�11�

Equation �8� was integrated via standard numerical methods
with initial conditions given by the amplitudes of the ground
state of H�t= tin�.

B. Residual energy and incomplete magnetization

A natural way of quantifying the degree of adiabaticity of
the evolution is to measure the residual energy defined as

Eres = Efin − Egs, �12�

where Egs is the ground-state energy of H�tfin� and Efin
= ���tfin�
H�tfin�
��tfin�� is the average energy of the final
time-evolved state 
��tfin��. Obviously Efin, and hence Eres,
depends on the annealing time �; the slower the evolution the
closer the final energy to Egs and hence the smaller the re-
sidual energy.

An alternative way of quantifying the degree of adiabatic-
ity of the evolution is in terms of the incomplete magnetiza-
tion in the final state defined by

minc = mgs − m�t� , �13�

where mgs is the static magnetization of the ground state of
�=0 and mgs is the average magnetization of the final
evolved state. Following Botet et al.,31 the magnetization m
has been defined through

m2 =
4

N2 ��
Sx
2 + 	�,1Sy

2
�� , �14�

where the expectation value can be taken either the ground
state, for mgs, or in the evolved state, for m�t�. As discussed
by Botet et al.,31 the previous definition differs from that of
the spontaneous magnetization; however, it is more ame-
nable for finite-size systems and it reduces to the spontane-
ous magnetization in the thermodynamic limit.

Since we are dealing with a model where the coupling has
an infinite range, the incomplete magnetization is an appro-
priate way to characterize the loss of adiabaticity. In this case
a correlation length characterizing the typical distance be-
tween defects, along the lines followed for short-range mod-
els, cannot be introduced.

In the Ising limit, �=0 at ��t=0�=0, the residual energy
and the incomplete magnetization are related as they both
depend only on the average value ���t=0�
Sx

2
��t=0��. The
residual energy per site can be expressed as

Eres

N
= −

1

N2 ���t = 0�
Sx
2
��t = 0�� +

1

4
. �15�

The incomplete magnetization is given by

minc = 1 −� 4

N2 ���t = 0�
Sx
2
��t = 0�� . �16�

C. Entanglement entropy

In addition to the previous observables, it was recently
shown that important information of the lack of adiabaticity
in the system can be acquired by analyzing the entanglement
entropy S.12,15 The study of entropy and other measures of
entanglement has been recently intensively studied to char-
acterize both equilibrium and nonequilibrium quantum
many-body systems �see Ref. 46 for a review�. In the case of
the LMG model the ground-state entanglement entropy was
studied in Refs. 47–51. In the present work we study the time
evolution of S during an adiabatic evolution.

Given a bipartition of the system in L and N−L spins, the
entanglement entropy associated to the reduced density ma-
trix of one of the subsystems, say �L, is defined as

SL = − Tr��L log2 �L� . �17�

The entropy SL measures the entanglement between the L
spins and the rest of the system.

The entanglement entropy is straightforwardly evaluated
by noticing that, being the states 
S=N /2,Sz� symmetric un-
der any permutations of the sites and being the maximum
value of the total spin achievable only with the maximum
value of the spin in each subsystem, the following decompo-
sition holds:48


N/2,Sz� = �
l=0

L

pl
1/2
L/2,l − L/2�

� 
�N − L�/2,n − l − �N − L�/2� .

In the previous decomposition n and l indicate, respectively,
the number of up spins in the system and in the partition
which defines the L sites. The coefficients appearing are de-
fined as pl=L ! �N−L� !n ! �N−n� ! / �l ! �L− l� ! �n− l� ! �N−L
−n+ l� !N!�. With the knowledge of the representation of the
evolved state in the basis 
N /2,Sz� and by using previous
decomposition, it is immediate to trace out the N−L spins to
obtain the reduced density matrix �L and calculate its en-
tropy.

III. RESULTS

The results presented below were obtained by integrating
numerically Eq. �8�. We verified that, as for the initial time of
the evolution, it is enough to consider tin=−5� for faster
sweeps �1���500� and tin=−2� for slower ones. We
checked �data not reported� that our results do not depend on
the precise value of tin. We considered systems up to N
=1024 spins and annealing times up to ��103–104.
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A. Residual energy and incomplete magnetization data

In order to understand the mechanism that leads to break-
down of adiabaticity in the LMG model, it is instructive to
start with one particular example. In Fig. 1 we chose a sys-
tem with N=32 spins and �=0, showing the time evolution
of the residual energy for different values of the annealing
time �. We also plot the instantaneous accessible gaps �thick
solid lines� obtained by diagonalizing the Hamiltonian at any
given �. As one can see, as soon as the system loses the
adiabaticity, for fast annealing, it starts to ramp up in energy.
The characteristic time scale for breaking of adiabaticity is
however not given by the equilibrium smallest gap. As no-
ticed in Sec. II, the dynamics is restricted to the subspace
with fixed total spin S=N /2 and can involve only states with
the same parity of Sz.52 Hence, the first gap relevant for the
dynamics, that we call dynamical gap, is the energy differ-
ence between the ground state and the second-excited state,
the smallest gap being forbidden by parity conservation of
the total spin along the z axis. As shown in Fig. 2, the dy-
namical gap exhibits the same critical behavior of the exci-
tation gap.33 Both close polynomially in the thermodynami-
cal limit with the same dynamical exponent z=1 /3 in �c
�N−z. This is usually accompanied by a polynomial-like de-

cay of the residual energy with increasing annealing time �.
This is indeed the case, for both the residual energy and the
incomplete magnetization, as shown in Fig. 3 and, more in
detail for �=0, in Fig. 4. The behavior appears to be quali-
tatively independent on the value of the anisotropy parameter
� for ��1 �see Fig. 3�; this was expected due to the fact that
the minimum gap has the same large-N behavior irrespective
of the anisotropy. In the following only the case �=0 will be
discussed.

Inspection of Fig. 4 reveals three different regimes. For
fast quenches the dynamics involves almost all the levels
�see, e.g., Fig. 1 for �=5�. The residual energy per site is near
to its maximum and shows very little dependence on the size
of the system and on the annealing time �. For larger values
of �, a second intermediate region appears in which a pow-
erlike decay emerges, with Eres��−3/2. Finally, by further
slowing the quench rate, a third large-� regime characterized
by a different power law, Eres��−2, emerges. We briefly dis-
cuss the emergence of the last two regimes by means of a
Landau-Zener �LZ� approach adapted to the present problem.

The argument follows closely the one given in Ref. 8. The
probability of exciting the system into the first-excited state,
obtained by the Landau-Zener formula

PLZ � e−��2� �18�

with �=� /4, gives a lower bound to the true transition prob-
ability as it ignores the transitions to all the other excited
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FIG. 1. �Color online� Residual energy Eres�t� versus t for a
given instance with N=32 and �=0 of the LMG model at different
values of �. The solid lines are the lowest-lying instantaneous spec-
tral gaps as a function of �. The red-dashed line is the best fit to the
lowest gap used to calculate the Landau-Zener transition rates.
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levels. Using the scaling of the critical-point gap with the
number of spins, ��N−1/3, it is possible to determine maxi-
mum system size for a defect-free quench once the probabil-

ity for this to occur is fixed to the value P̃ex. This gives

1

Nfree
� � 
ln P̃ex


�
3/2

1

�3/2 . �19�

One can consider 1 /Nfree as an estimate of the fraction of the
flipped spins after the quench. The residual energy per site in
the LMG model can then be evaluated to be

Eres

N
�

1

N2

N

Nfree
N �

const

�3/2 . �20�

This simple estimate is in good agreement with the numeri-
cal data in the intermediate regime of Fig. 4.

For short-range models the same power law of Eq. �20�
can be also derived by determining the spatial scale over
which defects occur.8 We tried to apply the arguments of
Zurek et al.8 to the LMG model by identifying the correla-
tion length with the coherence number introduced in Ref. 31.
The procedure we followed, however, does not lead to the
correct exponent. We have reasonable confidence that the
failure in obtaining the correct scaling with this second
method may be related to the above identification and the
consequent definition of defect density. It would be interest-
ing to find the correct argument in order to extend the ap-
proach by Zurek et al.8 or Polkovnikov9 to infinite range
models.

B. Effective two-level approximation

As already mentioned before, there is, for slower
quenches, a further crossover to a different power law. Can
one explain also this behavior by using a Landau-Zener ar-
gument? To this end, it is important to refine this comparison
and to understand to which extent the dynamics of a many-
body system described by the LMG model can be described
by two �many-body� levels. In general, in a many-body sys-
tem there will be a number of avoided crossings and multiple
LZ transitions including interference between them. Only
when a single avoided crossing is dominant and well sepa-
rated from the others a two-level approximation is appropri-
ate. A detailed analysis of this issue is summarized in Figs. 5
and 6 where we show the case of N=32 as an example. Our
analysis starts by extracting the best dynamical minimum
gap and adapting to it the following two-level Hamiltonian:

HLZ = �− �LZ�� − �0� �LZ

�LZ �LZ�� − �0�
 . �21�

In the effective Landau-Zener problem �LZ, �LZ, and �0 are
the fitting parameters and �=−t /�. In Fig. 1 the dashed line
represents the instantaneous gap of the Hamiltonian �21�
suited to the case of N=32. From here we compare the re-
sults of the full LMG model with those obtained using LZ
theory. As shown in Fig. 5, the excitation probability in the
LMG model for slow enough quenches coincides with that of
the effective LZ problem. It appears that this approximation

is good also in the estimate of the asymptotic value of the
probability for 10���100. Deviations come predominantly
from the more enhanced oscillations of the post crossing
region in the LMG model. For large �’s the asymptotic value
obtained from the effective two-level system gives a very
poor approximation to the actual data. This can be traced
back to the presence of further crossings which are obviously
neglected in the two-level approximation. In our LZ scheme
this can be effectively corrected by approximating the LZ
crossing probability to the time before the next level crossing
comes into play. This is explained below.

As found by Vitanov,53 it is possible to define the duration
of a single LZ as the time required by the probability for
jumping from zero to its asymptotic value linearly and with
the slope calculated at the crossing point. Using � as time
scale one can write

�jump �
P���

P���cross�
. �22�

This time turns out to be exponentially divergent with � for
large �.53 This means that, for slow quenches, consecutive
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FIG. 5. �Color online� Comparison between the excitation prob-
abilities as functions of � of the LMG model with N=32 and of its
effective LZ approximation for different values of �.
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one of the respective LZ-effective models �line� for different final
times. For the LZ models the first two terms of the Vitanov approxi-
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ability of exciting the first level is also presented �triangles�.
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LZ transitions are not independent. In a first crude approxi-
mation, we can guess that the consequence of this is simply
to stop the probability from relaxing toward the asymptotic
value when the system has reached the second crossing. The
presence of a power-law regime ��−2 for extremely slow
dynamics is a clear consequence of the finite duration of the
evolution. In the original works by Landau and by Zener, the
final time is supposed to be tf =�; here the evolution is
stopped at � f =−tf /�=0 for the LMG model and at t�LZ�f
=−��LZ�f� for the effective LZ with ��LZ�f =� f −�0. An accu-
rate analysis of the finite-time Landau-Zener model �FTLZ�
has been done in Ref. 53, where it is shown that the transi-
tion probability reads, in this case,54

P�FTLZ���� � PLZ��� +
�1 − 2PLZ����

16�LZ
4 �2

�LZ
2 �1 +

�LZ
2

�LZ
2 ��LZ�f

2 3

�23�

with PLZ���=e−��LZ
2

�/�LZ. As it can be immediately seen from
Eq. �23�, by sending the final time to infinity, the usual LZ
probability is recovered. The crossover rate �̂ to the �−2 scal-
ing is obtained by equating the two terms on the right-hand

side of Eq. �23�. In the limit 8
� �1+

�LZ
2

�LZ
2 ��LZ�f

2 �3/2
1 the cross-
over time is approximated by

�̂ �
�LZ

4�LZ
2

1

�1 +
�LZ

2

�LZ
2 ��LZ�f

2 3/2 . �24�

In Fig. 6 we compared the excitation probabilities of LMG
systems of different sizes with their single-LZ approxima-
tions. The probabilities for the effective models are evaluated
for three different final time: � f =0,�1 ,�2, where the last two
are the positions, respectively, of the minimum gap between
the ground state and the second-excited level and the mini-
mum gap between the first- and the second-excited levels. As
it can be seen, the agreement is quite good and one can
reproduce in this way also the regime with the �−2 behavior.

C. Entanglement entropy

We finally would like to discuss the behavior of the en-
tanglement entropy, which was already used as a tool to char-
acterize adiabatic many-body dynamics in Refs. 12 and 15.
Our results are summarized in Fig. 7. In the left lower panel
the entanglement entropy, for a block of size L=N /2, of the
state evolved down to � f =0 is plotted as a function of the
quench time �. For fast quenches, �→0, the state does not
evolve �it remains in a nearly factorized state�; thus, the en-
tanglement necessarily tends toward zero. For very slow dy-
namics �→�, since we are dealing with finite systems, the
evolution eventually becomes adiabatic and the entangle-
ment picks up the value it assumes in the final ground state
Sgs�� f =0�=1 independently on the subsystem size.48 Be-
tween this two limiting behaviors, the entropy reaches a size-
dependent maximum at an intermediate value of �. An inter-
esting feature is that the presence of a finite minimum gap
can be easily connected with a time scale for the decaying of

the entanglement. A possible choice for this time scale con-
sists in selecting the ��, at which the entropy has reduced by
half the value of its peak with respect to the slow quench
limit

SN/2���� =
�Smax − 1�

2
+ 1. �25�

In the upper panel of Fig. 7, �� determined in this way is
shown as a function of the system size N. For large N, a
powerlike behavior emerges with an exponent of �0.66 hint-
ing at a relation

�� �
1

�2 . �26�

In the lower right panel of Fig. 7, the entanglement SN/2
divided by its maximum value Smax is plotted as a function of
the rescaled variable � /N0.66, showing, for large systems �N
�128�, a collapse of all data on the same curve. Note that
Eq. �26� expresses exactly the same energy-time relation
found in the usual LZ system �see Eq. �18��, so that the
correspondence stated in Secs. III A and III B is again sup-
ported.

IV. CONCLUSIONS

In this paper we have studied the adiabatic quantum dy-
namics of the LMG model in a transverse field across its
quantum critical point. We focused our attention on the re-
sidual energy after the quench, analyzing its behavior as a
function of the annealing time, in order to evaluate the extent
of diabaticity of the evolution. The dynamics is restricted to
a subspace of definite total spin and parity of its projection
along the z axis due to the symmetries of the Hamiltonian.
The results appeared to be qualitatively independent of the
value of the XY-anisotropy parameter �, except for the fully
isotropic XX case at �=1, where the further conservation of
Sz plays an important role. By starting the evolution in the
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FIG. 7. �Color online� Left lower panel: Entanglement entropy
of a block of L=N /2 spins as a function of the quench time �. Right
lower panel: entanglement entropy of a block of L=N /2 divided by
its maximum value as function of the rescaled variable � /N0.66.
Upper panel: The time scale ��, see the text for the definition, as a
function of system size N.
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ground state for very large values of the transverse field �,
and then reducing ��t� linearly to zero, three regimes in the
residual energy are identifiable. The first one, corresponding
to fast quenches, is strongly not adiabatic, involves transi-
tions from the ground state toward many excited states, and
is characterized by a residual energy near to its saturation
value. In the intermediate regime, the lowest critical dynami-
cally accessible gap starts dominating the evolution, induc-
ing a residual energy per site that decays in a powerlike
manner as �−3/2. The third large-� region, where the residual
energy decays as �−2, is understood by taking into account
the presence of additional level crossings. In the effective
Landau-Zener description we used in this paper, this results
in the requirement of considering a finite-time Landau-Zener

sweep. As shown by Vitanov a finite-time sweep leads to a
polynomial �in �� contribution to the LZ transition probabil-
ity, which is dominant for very slow sweeping rates. Notice
that this �−2 regime, usually described as the general devia-
tion from adiabaticity derived from the adiabatic theorem for
very slow evolutions,55,56 emerges here in an alternative way
through the parallelism with an effective FTLZ model.
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